Kinetics of electron transfer through the respiratory chain.

نویسندگان

  • Qusheng Jin
  • Craig M Bethke
چکیده

We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scanning electrochemical microscopy. 59. Effect of defects and structure on electron transfer through self-assembled monolayers.

Electron transfer (ET) rate kinetics through n-alkanethiol self-assembled monolayers (SAMs) of alkanethiols of different chain lengths [Me(CH2)nSH; n=8, 10, 11, 15] on Au and Hg surfaces and ferrocene (Fc)-terminated SAMs (poly-norbornylogous and HS(CH2)12CONHCH2Fc) on Au were studied using cyclic voltammetry and scanning electrochemical microscopy (SECM). The SECM results allow determination o...

متن کامل

Single-Molecule Kinetics of Interfacial Electron Transfer

Measurements of single-molecule chemical reaction kinetics are demonstrated for interfacial electron transfer from excited cresyl violet molecules to the conduction band of indium tin oxide (ITO) or energetically accessible surface electronic states under ambient conditions by using a far-field fluorescence microscope. In this system, each single molecule exhibits a single-exponential electron ...

متن کامل

Analysis of Kinetic Chain Mechanism Affecting Energy Flow in Kick Topspin Tennis Serve in Elite and Amateur Tennis Players

Background. Effective kick-topspin serving in tennis requires power to transfer mechanical energy through a kinematic chain from different parts of the body that is directly related to the kinetics of the joints. Energy flow analysis is a powerful tool for observing the mechanical energy transfer through the body parts. Objectives. This research aimed to study the correlation and predictive ab...

متن کامل

Electrode kinetics at carbon electrodes and the density of electronic states.

Marcus-Hush theory relates the rate of electron transfer to the density of electronic states of the electrode material. Through use of a carbon microelectrode--for which the density of states is expected to vary as a function of potential--this predication is validated for graphitic materials by measurement of a variety of outer-sphere redox systems.

متن کامل

2. Probing the Mechanism of Electron Capture and Electron Transfer Dissociation Using Tags with Variable Electron Affinity

Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via β-elimination and Michael addition of various thiol compounds. These include pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2002